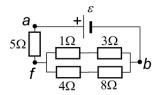
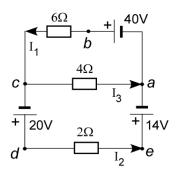

1. Four *air-gapped* capacitors, $C_{10} = 10 \, \mu\text{F}$, $C_{20} = 5 \, \mu\text{F}$, $C_{30} = 15 \, \mu\text{F}$, and $C_{40} = 20 \, \mu\text{F}$ are connected as shown in the following figure. A battery maintains a potential difference $V_{ab} = +60 \, \text{V}$ between a and b. Initially the dielectric slab with $\kappa = 2$ is not inserted in C_{10} .



- (a) (5 points) Find the equivalent capacitance between a and b.;
- (b) (10 points) Find the potential difference across C_{10} and C_{20} ;
- (c) (10 points) Find energies stored on C_{20} and C_{30} ;
- (d) (10 points) Maintaining the potential difference $V_{ab} = +60 \text{ V}$, insert the dielectric slab with $\kappa = 2$ to *fill* the air-gap in C_{10} and make it C_1 . Find the potential drop across C_1 now.
- (e) (Extra 10 points) For Part (d), before the dielectric slab is inserted, the capacitor network between a and b is first disconnected from the battery. Now the dielectric slab is inserted in C_{10} . Find the potential drops across C_1 and C_{40} .
- 2. In the following circuit,



- (a) (10 points) Find the direction and magnitude of the current in the circuit;
- (b) (5 points) Find the energy dissipated in the 5Ω resistor;
- (c) (5 points) Find the potential difference $V_{ad} = V_a V_d$.

3. In the following circuit, $\varepsilon = +16V$,

- (a) (10 points) Find the network resistance R_{ab} ;
- (b) (5 points) Find the potential drop across the 5Ω resistor;
- (c) (10 points) Find the current and power dissipated in the 8Ω resistor;
- (d) (**Extra 5 points**) Explicitly show that the sum of the power dissipated in all five resistors equals to the power dissipated in the network resistor R_{ab} .
- 4. In the following circuit,

- (a) (15 points) Find the currents through all three resistors;
- (b) (5 points) Find the potential difference $V_{bd} = V_b V_d$.